Search results for " Co-doped"

showing 3 items of 3 documents

Highly textured boron/nitrogen co-doped TiO2 with honeycomb structure showing enhanced visible-light photoelectrocatalytic activity

2020

International audience; In this work, we report a novel photocatalyst based on boron and nitrogen co-doped TiO2 rutile (1 1 0) honeycomb structures. The photocatalyst has been prepared by simultaneously oxidizing and doping a Ti-foil substrate at 750 degrees C. The unit cell volume and the crystallite size of grown TiO2 films were measured by Rietveld refinement analysis. The co-doping by boron and nitrogen was achieved simultaneously with the oxidation of the titanium, resulting in a rutile (1 1 0) textured TiO2 film. X-ray photoelectron spectroscopy analysis revealed the presence of Ti-O-N and Ti-O-B-N bonds, and the presence of crystal defects in the lattice was detected and displayed by…

Rutile [110]Materials scienceGeneral Physics and Astronomychemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciences7. Clean energysymbols.namesakeX-ray photoelectron spectroscopyTiO2 honeycomb structure[CHIM]Chemical SciencesPhotocatalysisBoronRietveld refinementDopingSurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmsChemical engineeringchemistryRutileHydrogen productionPhotocatalysissymbolsB/N co-doped0210 nano-technologyRaman spectroscopyVisible spectrumApplied Surface Science
researchProduct

Anodic Electro Deposition of CeO2 and Co-Doped CeO2 Thin Films

2013

CeO2 and Co containing CeO2 thin films were deposited on indium tin oxide and stainless steel by anodic electrodeposition. Scanning electron microscopy showed that the films are flat and show globular morphology and cracks resulting from volume shrinking. According to XRD and Raman Spectroscopy pure ceria layers are crystalline, while the presence of Co induces the formation of amorphous films. The good adhesion and the compactness allowed the photoelectrochemical characterization of the films. A band gap value of 2.9 eV was estimated for CeO2, while slightly higher values (̃3.0 eV) were estimated for Co containing films. A mechanism for ceria anodic electrodeposition is proposed and discus…

Materials scienceceo2 electrodepostion band gapRenewable Energy Sustainability and the EnvironmentAnodic electrodeposition Band-gap values Co-doped Globular morphology Indium tin oxide Photoelectrochemical characterization XRDCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAnodeCarbon filmChemical engineeringMaterials ChemistryElectrochemistryThin filmDeposition (chemistry)Co doped
researchProduct

Nitrogen and sulfur co-doped carbon nanodots toward bovine hemoglobin: A fluorescence quenching mechanism investigation

2018

A deep understanding of the molecular interactions of carbon nanodots with biomacromolecules is essential for wider applications of carbon nanodots both in vitro and in vivo. Herein, nitrogen and sulfur co-doped carbon dots (N,S-CDs) with a quantum yield of 16% were synthesized by a 1-step hydrothermal method. The N,S-CDs exhibited a good dispersion, with a graphite-like structure, along with the fluorescence lifetime of approximately 7.50 ns. Findings showed that the fluorescence of the N,S-CDs was effectively quenched by bovine hemoglobin as a result of the static fluorescence quenching. The mentioned quenching mechanism was investigated by the Stern-Volmer equation, temperature-dependent…

NitrogenQuantum yieldchemistry.chemical_element010402 general chemistryPhotochemistry01 natural sciencesHemoglobinsStructural BiologyQuantum DotsAnimalsMolecular Biologybovine hemoglobinQuenching (fluorescence)010401 analytical chemistryFluorescenceSulfurAcceptorNitrogenCarbon0104 chemical sciencesquenching mechanismchemistrySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoCattlefluorescenceDispersion (chemistry)CarbonSulfurnitrogen and sulfur co-doped carbon dotsJournal of Molecular Recognition
researchProduct